

FORMULATOR
v3.8

MathML Suite

Mastering MathML
Content Markup

Published By

Hermitech, Laboratory of Mathematical and Modeling Software,
Zhytomyr, UKRAINE

E-mail: info@mmlsoft.com
Web: http://www.mmlsoft.com

Copyright © 2003-2008 by Hermitech, Laboratory of Mathematical and
Modeling Software. All rights reserved.

Mastering MathML Content Markup http://www.mmlsoft.com

 3

Mastering MathML Content Markup

Presentation elements describe visual two-dimensional hierarchical forms and thus give

more or less precise instructions how to render and how edit mathematical constructs. Content
Markup closely follows the semantic structure of the mathematical objects. This is quite the
challenging approach to coding mathematics for such a WYSIWYG-style mathematical editor,
as Formulator 3.7 MathML Weaver.

As an answer to this problem MathML Weaver implements a technology of internal
wrapping of Content Markup expressions in Presentation Markup nodes. The main tool for this
is an empty frame element that encodes a new hierarchical relations inside of Content Markup
expression and carries all the specific information about final names and values of tags and
attributes. This allows to edit Content Markup expressions in WYSIWYG-style, but at the same
to establish explicit connections between mathematical structures and their mathematical
meanings.

Please note that, as a rule, a user should not care about wrapping of Content Markup
expressions in Presentation Markup nodes. From the point of view of end-user, there is just a
way in MathML Weaver to insert and to edit visually a semantic kind of MathML notation . The
only reason why we raise this question in the manual is that bearing in mind of such an
peculiarity of the Content Markup editing implementation can be useful for understanding of
the behavior of MathML Weaver in some complicated cases.

General Principles of Editing and Navigation

MathML Weaver proposes two ways to create Content Markup elements. The first is

most general, since it supposes to make use of mathematical toolbars:

A group of Content mathematical templates comprises:
 token elements
 basic content elements
 piecewise declaration templates
 arithmetic operators
 algebra operators
 logic operators
 maximum and minimum templates
 relations templates
 calculus and vector calculus templates
 theory of sets templates
 sequences and series templates
 common trigonometric functions
 common hyperbolic functions
 common exponential functions
 statistics templates

Mastering MathML Content Markup http://www.mmlsoft.com

 4

 linear algebra templates
 semantics templates
 constant and symbol elements
 qualifier elements templates

The second way to insert Content Markup elements is connected with an option to

switch input between Content and Presentation MathML input modes (the last one is used by
default):

 Selecting Content MathML Input Mode leads to inserting of Content MathML

mathematical templates when a user presses a sign of the corresponding operation. E.g.,
pressing „+‟ in the Content MathML Input Mode inserts a mathematical template ▓+▓ for the
<apply> element with the operator element <plus/>. The next example shows how to work
with this mode in more details.

1. After switching to the Content MathML Input Mode type ‟+‟ sign (make sure that

Status Icon in the right bottom corner of MathML Weaver indicates). We now see the
<apply> element inserted. Then we can use the “Show Nesting” command and navigation
arrows to investigate how this Content Markup element is composed.

A grey rectangle around the ▓+▓ form and tips in the status bar suggests that in the

document there is one frame node, marked as an “apply” element and internally encoded as an
additional nesting “mrow” element.

After pressing the Right arrow we consequently get to the input slots of this “apply”
form. ‟+‟ sign cannot be edited on this stage, since it is an integral part of the expression. For the

Mastering MathML Content Markup http://www.mmlsoft.com

 5

sake of flexibility the type of operation still can be easily changed using the “MathML Tree”
page:

2. Now we can enter arguments of the just created “apply” element. The most important

thing about input slots of this visual form is that their kinds can be automatically detected by
MathML Weaver after a user types some text or utilizes Formulator‟s mathematical toolbars.

Initially, these input slots don‟t have any predefined kind (associated Content or
Presentation Markup element). It can be easily discovered if we look on the navigation
information bar; there is a record for the parent node, but the current node record is undefined
yet.

Type character „a‟ in the first slot, press the Right arrow and type „2‟ in the second slot:

Mastering MathML Content Markup http://www.mmlsoft.com

 6

Note that on this stage „a‟ and „2‟ are still marked as presentation elements (“mi”, ”mn”).

They become Content elements only after they will be converted from the internal document
representation to MathML 2.0 text.

Switch to the “MathML Tree” page and make certain that the “apply” element is created
correctly.

Now switch back to the “Expression” page and exchange „a‟ and „2‟ in their input slots.

Mastering MathML Content Markup http://www.mmlsoft.com

 7

The “MathML Tree” page shows that input slots still work as automatically detected by
their content areas, because the first slot now turns to be ”cn” element and the second slot
became the ”ci” element.

3. This smart behavior of the input slots of the “apply” form lasts for all the time of

WYSIWYG-style editing, but stops when a user manually interferes in the editing by means of
the “MathML Tree” or “MathML Text” page. To see this, switch to the “MathML Tree” and
change type of the operator from <plus/> to <minus/>:

At first glance nothing changed, but take a look to the navigation information bar (red

circled area). Now We have a rigid Content Markup structure, composed of the “apply”
element with a leaf of the “ci” element. The internal presentation of the “ci” element is formed
of the “mi” element, but it is of less importance, since in the MathML 2.0 text there will be no
internal presentation remains.

Mastering MathML Content Markup http://www.mmlsoft.com

 8

To make sure that a new structure of the expression is fixed try to repeat our trick with
exchanging „a‟ and „2‟ in their input slots.

Now „a‟ is considered as a number token element “cn” and „2‟ is considered as an

identifier element “ci”, because in the rigid structured document input slots have already known
their kind of Content MathML elements and no automatically detection was provided.

In this example we show another typical feature of the way that MathML Weaver deals

with Content Markup. Since „a‟ is situated in the “cn” element, it should not be rendered as
italic. But MathML Weaver doesn‟t interfere into a user‟s work in such a case, but proposes
instead a short way to bring the formula‟s image to conformity with its semantics. Choose the
“Refresh All Through MathML” command from the View menu and see how the entire look of
the mathematical formula is changed.

Mastering MathML Content Markup http://www.mmlsoft.com

 9

3. Input slots of the created “apply” form can be filled as well with more complicated
expressions than tokens. See, for example, how to create mathematical expression with several
arithmetical operations.

Press the „+‟ sign.

Press the „-‟ sign.

Press „1‟, the Right arrow, „2‟.

Press the Right arrow. Now be careful with editing actions, because dashed selection

around 1 – 2 form indicates that we now on the hierarchical level of the “apply” element with
<minus/> operator inside.

To continue editing the formula we need to place cursor to an empty input slot on the

right side of the formula, so, just press the Right arrow once more.

Mastering MathML Content Markup http://www.mmlsoft.com

 10

Press „*‟.

Press „3‟, the Right arrow, „4‟.

The needed formula is created but lacks of proper appearance, because MathML Weaver

has no chance yet to apply its precedence rules and to calculate how to draw this Content
Markup formula. Choose the “Refresh All Through MathML” command and see how the image
of the mathematical formula is changed.

After we have created a mathematical formula we can check how it is encoded in

MathML 2.0 format using the “MathML Tree” or “MathML Text” pages.

Mastering MathML Content Markup http://www.mmlsoft.com

 11

4. Navigation through the newly created formula is not absolutely evident until we think

about hierarchical structure of the Content Markup expression. Choose the “Show Nesting”
command (by pressing Ctrl+Shift+N or from the “View” menu); then choose a new greater
scale factor by pressing Ctrl+5 or from the “Zoom” submenu of the “View” menu.

Now we can clearly see that the structure of the expression is not simple and we cannot

expect the navigation to be as plain as in the Presentation Markup case. The higher level
“apply” element has two child “apply” elements, and each of them in its turn has child leafs,
encoded with token elements.

Mastering MathML Content Markup http://www.mmlsoft.com

 12

Press the mouse button on the right of the formula. This will place the cursor in the
outermost right position available for editing.

Press the Left arrow. The cursor is now in a position for editing an input slot that

currently has „4‟ in it. See the navigation information bar to make sure of this. Note that cursor
height is changed also according to the current inner level of hierarchy.

Press „0‟ to edit the last argument of the expression.

Press the Left arrow three times. We now again on the level of the <times/> “apply”

element. In this position we could delete the last argument after pressing Delete button two
times. The first pressure would select the entire input slot and mark it with black. The second
pressure would confirm deletion.

In order to get back to the higher level of the <plus/> “apply” element we need now 5
times pressing of the Left arrow. By each pressing we go through different levels of the formula
structure, where each level propose its own editing facilities. Imagine that we are navigating
through the tree of Content Markup elements and this procedure becomes evident.

See how the navigation information bar helps to understand which level of the formula
structure is currently available for editing.

Mastering MathML Content Markup http://www.mmlsoft.com

 13

Press the Left arrow and the Backspace button.

(1 – 2) form is marked for deletion. Press the Backspace button once more time.

Now type number 100 and by switching to the “MathML Text” see how MathML

Weaver automatically detected that while a user is situated inside of the Content Markup
expression then the Content token element is needed.

Mastering MathML Content Markup http://www.mmlsoft.com

 14

Token Elements: externally defined symbol (csymbol)

Content expression trees are built up starting from token elements. Numbers and

symbols are marked by the “cn” and “ci” elements; the “csymbol” element allows to create an
element whose semantics are externally defined.

Content Markup token elements are available via toolbar:

As we can see from this figure, MathML Weaver provide several buttons for a token

element to account for existing options of base, type, etc. A button with „…‟ sign on its image
leads to a dialog requesting some context dependent attributes of the newly created expression
(e.g., type of an identifier).

1. The simplest case of the Content token element is presented by “csymbol”. When a

user presses icon, the current empty slot is not altered visually, but the navigation

information on the status bar helps to understand that we have already started to build a
Content expression tree. The next tree figures shows this in details.

Mastering MathML Content Markup http://www.mmlsoft.com

 15

Now all that we type in the current empty slot will be interpreted as a content of the

“csymbol” element:

2. It is worth noting that this just created Content expression can be supplied with all the

need attributes on the page of “MathML Tree”. The next figure shows how to turn this
expression into the example 4.4.1.3.3 from the W3C MathML Recommendation (reference to
human readable text description of Boltzmann's constant).

3. Another important feature of the inserted visual forms for Content Markup in

MathML Weaver is that they also can carry Presentation Markup. For example, if we use a set of
Presentation toolbars we can easily create another example from the section 4.4.1.3.3 of the W3C
MathML Recommendation (reference to OpenMath formal syntax definition of Bessel function):

<!-- reference to OpenMath formal syntax definition of Bessel function -->

<apply>

 <csymbol encoding="OpenMath"

 definitionURL="http://www.openmath.org/cd/hypergeo2#BesselJ">

 <msub><mi>J</mi><mn>0</mn></msub>

 </csymbol>

 <ci>y</ci>

Mastering MathML Content Markup http://www.mmlsoft.com

 16

</apply>

Press the button on the Content toolbar set to get access to the group of “apply”

elements of different form. Choose the first button.

This will insert an “apply” element with one argument in its functional form.

Now insert the “csymbol” element in the first input slot of the “apply” element.

Mastering MathML Content Markup http://www.mmlsoft.com

 17

Using the Presentation toolbars set build up contents of the “csymbol” element:
<msub><mi>J</mi><mn>0</mn></msub> (J0).

Navigate to the second input slot of the “apply” element and press „y‟. This will fill the

argument of the “apply” element with <ci>y</ci> content.

Mastering MathML Content Markup http://www.mmlsoft.com

 18

Now switch to the “MathML Tree” to add two attributes to the “csymbol” element. In
order to do this click on the right side of the document (“Property-Value” dialog) and press the
Insert button. We now see that an empty attribute record is added.

Using drop-down lists create “encoding” and “definitionURL” attributes.

Check the results on the “Expression” and “MathML Text” pages.

Token Elements: numbers (cn) and identifiers (ci)

Mastering MathML Content Markup http://www.mmlsoft.com

 19

There are several attributes modifying Content Markup semantics for token elements.
Thus the “base” attribute indicates numerical base of the number; the “type” attribute indicates
type of the number or identifier. Moreover, different types of numbers will be rendered in a
different way and even appearance of identifiers can be altered by changing the “type”
attribute.

In order to visually support these requirements, Formulator 3.7 MathML Weaver
proposes several ways to input Content Markup token elements: namely, a user can choose a
button representing the needed type of a number from the toolbar or make some alterations in
the attribute values via the “MathML Tree” page or by using corresponding property dialogs

for buttons and :

1. The next example shows how to create a simple identifier token element and how to

change its appearance by editing the “type” attribute.

Insert the “ci” element by pressing the button.

As it is shown on the next figure, the “ci” element appears as an empty slot and the

navigation bar information makes sure that it is inserted.

Now type an identifier in the current input slot. Note that the context of the “ci” element

is one of three cases where presentation markup may appear in content markup properly. So,
not only plain text can be typed into the “ci” input slot, but also some kind of presentation
markup tree.

Mastering MathML Content Markup http://www.mmlsoft.com

 20

According to the default value of the “type” attribute of the “ci” element (unspecified

type), contents of the “ci” element are represented as if it were contents of a “mi” element (italic
style).

Now change the current page of MathML Weaver and add the “type” attribute into the
“ci” node. Then choose the “matrix” value from the list of known identifier‟s types.

Switch back to the “Expression” page and see how rendering of the “ci” element is

changed. Now A is bold according to the typographical rules of representing the “matrix” type.

As in the case of the “csymbol” element, Content Markup identifiers can carry

Presentation Markup. For example, if we use a set of Presentation toolbars we can create an
example from the section 4.4.1.2.2 of the W3C MathML Recommendation:

<ci>

 <msub>

 <mi>x</mi>

 <mi>i</mi>

 </msub>

</ci>

Insert the “ci” element.

Mastering MathML Content Markup http://www.mmlsoft.com

 21

Use the Presentation toolbar to insert Subscript node and fill it with xi expression.

See results on the “MathML Text” page.

Mastering MathML Content Markup http://www.mmlsoft.com

 22

2. The next example shows how to create a simple number token element and how to
control its appearance and semantics by altering “type” and “base” attributes.

Insert the “cn” element by pressing the button. Then the initial property dialog for

the “cn” element will be shown.

Choose the “integer” value in the “type” drop-down list and 5 as a base of a number.

This feature lets creating numbers of different numerical bases.

A user can control number‟s type not only via different values proposed by the initial

property dialog (“rational”, “complex-cartesian”, “complex-polar”), but also with the help other

available buttons of the toolbar.

For example, rational numbers can be created by pressing the button if the

“rational” type is selected afterwards from the initial property dialog or at once with the

button.

Press the button and select the “rational” type.

Fill numerator and denominator with the numerical values.

Mastering MathML Content Markup http://www.mmlsoft.com

 23

Select the created rational number (with Shift + arrow keys or with mouse) and click on

the button. The pane of Arithmetic Operators of the Content Markup is now available. After

pressing on one of the buttons representing the “apply” element with one and more arguments
the current selection will be considered as the first argument of this “apply” element.

Let‟s press on the button and see how the structure of the built MathML tree is

changed. The figure suggests that the <apply><plus/>…</apply> pattern is inserted and the
rational “cn” element is the first argument of this operation.

Mastering MathML Content Markup http://www.mmlsoft.com

 24

To fill the second input slot, navigate to it with the Right arrow and press the button

of the toolbar. This will insert another rational number without additional dialogs.

Compare results on different pages of MathML Weaver (“Expression”, “MathML Tree”,

“MathML Test”).

Basic Content Elements: apply

The “apply” element of the Content Markup allows a function or operator to be applied

to its arguments. It is the basic element in a sense that the overwhelming majority of

Mastering MathML Content Markup http://www.mmlsoft.com

 25

expressions in MathML content markup is carried out by applying operators or functions to
arguments.

The toolbar of basic content elements in MathML Weaver contains several groups of

buttons for creating different forms of the “apply” element and some related to this element
concepts:

The first 4 buttons in the toolbar are responsible for the “apply” element itself: 1, 2, 3, and

many-arguments forms. Please note, that these buttons represents the most general, functional
form of the “apply” element appearance. Theoretically we can use these buttons for some other
purpose, e.g., for arithmetic operators applying, but since there is a traditional infix form of
rendering for arithmetic operators, such way of editing MathML content markup is not
recommended. The next example shows this and others features of work with the “apply”
element.

1. Insert sin(x) expression.

Press the button; type “sin” in the first and “x” in the second input slot.

Mastering MathML Content Markup http://www.mmlsoft.com

 26

The rendering of this MathML fragment is not finished; to make it correct use the

“Refresh All Through MathML” command from the “View” menu. This helps MathML Weaver
to find the meaning of the entered text and to render it according to the mathematics
representation rules.

We did need such an additional action, because the most general form of the “apply”

element was used. Normally, it is quite enough for users to have just special toolbars with
common functions and operators. The previous example in that case would be more simple, as
the next figures suggest.

Press the button of the common trigonometric functions toolbar () and type “x”

in the input slot.

We have the same MathML tree for sin(x) as earlier, but now it was much faster.

Mastering MathML Content Markup http://www.mmlsoft.com

 27

There is one more way to deal with this example, but it is similar to the first case and is

shown here only for the sake of completeness. The only distinction is that we can not just type

the “sin” value into the input slot, but press the corresponding button from the common

trigonometric functions toolbar (). Then MathML Weaver will know about the special (plain,

not italic) rendering of the first argument of the “apply” element, but still we should use the
“Refresh All Through MathML” command from the “View” menu to help MathML Weaver
understand that enclosing the “x” text in brackets is not needed:

2. Insert a function of four arguments.

Press the button; fill the needed number of arguments in the shown dialog and see

the newly created visual representation of the “apply” element.

Now this form can be filled with other elements of the MathML content markup.

Mastering MathML Content Markup http://www.mmlsoft.com

 28

Mastering MathML Content Markup http://www.mmlsoft.com

 29

3. Create an arithmetic expression.

The easy way is to use the corresponding toolbar and special buttons:

There is also a more long way to create this form by means of the “Basic Content

Elements” toolbar.

Mastering MathML Content Markup http://www.mmlsoft.com

 30

Type the operator „+‟ and values into input slots as if they represent the functional (in

contrast to infix) notation.

The structure of the MathML tree is already built up, but the rendering will become

correct after refreshing the text by means of the “Refresh All Through MathML” command.

Basic Content Elements: functions and operators

1. Create the image of a given function, which is the set of values taken by the function

(4.4.2.14.2 example from the W3C MathML Recommendation):

Mastering MathML Content Markup http://www.mmlsoft.com

 31

<apply>

 <eq/>

 <apply><image/>

 <sin/>

 </apply>

 <interval>

 <cn>-1</cn>

 <cn> 1</cn>

 </interval>

</apply>

Mastering MathML Content Markup http://www.mmlsoft.com

 32

There comes a time when we should recall the difference between Presentation and

Content markups. If we just type any text into the first and the second slot, MathML Weaver
consider this as if we want to create some presentation for arguments of the “interval” element.
But it is not true, since we are going to create content markup number elements there. So, now
be careful, MathML Weaver will correctly detect the element of the content markup only if we
type into these slots valid numeric constants.

Mastering MathML Content Markup http://www.mmlsoft.com

 33

2. Create the inverse element in order to construct a generic expression for the functional

inverse of that function (4.4.2.5.2 example from the W3C MathML Recommendation):

<apply>

 <inverse/>

 <ci> f </ci>

</apply>

Mastering MathML Content Markup http://www.mmlsoft.com

 34

Type “f” into the input slot and see the structure of the MathML tree using nesting

feature (Ctrl+Shift+N) and larger zoom (Ctrl+5).

See results on the “MathML Tree” page.

<apply>

 <apply><inverse/>

 <ci type="matrix"> a </ci>

 </apply>

 <ci> A </ci>

</apply>

Mastering MathML Content Markup http://www.mmlsoft.com

 35

Mastering MathML Content Markup http://www.mmlsoft.com

 36

3. Create the lambda element that is used to construct a user-defined function from an

expression, bound variables, and qualifiers (4.4.2.9.2 examples from the W3C MathML
Recommendation):

<lambda>

 <bvar><ci> x </ci></bvar>

 <apply><sin/>

 <apply>

 <plus/>

 <ci> x </ci>

 <cn> 1 </cn>

 </apply>

 </apply>

</lambda>

The first input slot is for the “bvar” element; type “x” text into it and it will be detected

as a “ci” element when converting to MathML.

Mastering MathML Content Markup http://www.mmlsoft.com

 37

Now navigate to the second input slot (press the Right arrow) and insert a new visual

form for editing sin(…) expression.

Now insert the “apply” element for the <plus/> operator. Please note that we cannot just

type „+‟ sign, because the current input mode is Presentation MathML (icon in the right side
of the Status Bar).

Mastering MathML Content Markup http://www.mmlsoft.com

 38

Type “x” and “1” into input slots. The results are shown on the next two figures.

Basic Content Elements: invisible and transparent elements

This section describes how to work with invisible and transparent MathML nodes:

“declare” and “condition” elements of the content markup.

Working with the “declare” element asks for additional actions, because according to the

W3C MathML Recommendation it should not be directly rendered. Thus the “declare” element
is considered as invisible and is rendered in two cases only:

Mastering MathML Content Markup http://www.mmlsoft.com

 39

a) just after insertion of this element from the mathematical toolbar of MathML Weaver

();

b) if the option “show invisible elements” is turned on (the green icon in the right
corner of the Status Bar).

Additionally there is a limitation while using the “declare” element: MathML Weaver
cannot hold a document that has no other elements except of the “declare”. This means that
when a user tries to save the following example without any additional MathML elements, then
an empty document will be created. This known limitation of MathML Weaver relates to the
specific rendering requirements of the “declare” element and the point that the presence of this
element makes a sense only when other elements of the document refers to this declaration.

1. In order to demonstrate how to work with the “declare” element let‟s create a MathML

tree for the following example from the W3C MathML Recommendation (4.4.2.8.1)

<declare type="vector">

 <ci> V </ci>

 <vector>

 <cn> 1 </cn><cn> 2 </cn><cn> 3 </cn>

 </vector>

</declare>

Please note that currently rendering of invisible elements is turned off ().

A dialog is shown to initially tune attributes of the “declare” element. Select the “vector”

in the “Type” drop-down list. The next two attributes (“nargs”, “occurrence”) can be leave as

Mastering MathML Content Markup http://www.mmlsoft.com

 40

they are, without editing. The check-box to the bottom of the dialog asks whether the “declare”
element contains a constructor initializing the variable.

Type “V” into the first input slot; place the cursor into the second input slot and press the

button for the “vector” element insertion.

Mastering MathML Content Markup http://www.mmlsoft.com

 41

Type values of the vector into three input slots.

See the results.

Now do a inessential editing of the MathML text (for example, just press a space

somewhere between tags) and get back to the “Expression” page. We see an empty body of the
document, because the “declare” element is not rendered normally and the option “show
invisible elements” is turned off currently. About presence of the just created “declare” element
indicates only the navigation information bar and absence of the dashed line around an empty
input slot (it is shown only when the line of a document contains no elements).

Check the option “show invisible elements” from the “Display Content MathML

Elements” submenu of the “Option” menu. We still can‟t see the “declare” element, but the icon
 suggests that the action was successful and the icon prompts to the need of refreshing the

document through MathML (the “Refresh All Through MathML” command from the “View”
menu).

Mastering MathML Content Markup http://www.mmlsoft.com

 42

After refreshing the document rendering we see the “declare” element again, because the

mode of invisible elements rendering is now turned on.

2. Create the “condition” element (4.4.2.7.2 examples from the W3C MathML

Recommendation) to see how initially invisible (transparent) elements behave.

<condition>

 <apply><in/><ci> x </ci><ci type="set"> A </ci></apply>

</condition>

Mastering MathML Content Markup http://www.mmlsoft.com

 43

At the first glance, the rendering of the document is not changed, but the navigation

information suggests that the “condition” element is successfully inserted and it is not rendered
just because there is no presentation for it; the presentation of the “condition” element coincides
with its contents rendering.

The changed structure of the document can be viewed using the “nesting view” feature.
Compare view of the document before insertion of the “condition” element (dashed line around
the empty input slot):

Mastering MathML Content Markup http://www.mmlsoft.com

 44

and after it (solid line over the dashed line around the empty input slot):

This solid line suggests to the thought that there is an internal frame element to hold a

newly created element of the content markup.
Now let‟s back to our example and create the “apply” element inside of the “condition”

element.

Mastering MathML Content Markup http://www.mmlsoft.com

 45

See the results

Arithmetic, Algebra, Logic and Relations

1. Example 4.4.3.9.2 from the W3C MathML Recommendation).

<apply>

 <times/>

Mastering MathML Content Markup http://www.mmlsoft.com

 46

 <ci> a </ci>

 <ci> b </ci>

</apply>

Press the button on the mathematical toolbar for arithmetic operators or switch the input

mode to the Content Markup and just press the „*‟ character.

Type „a‟, press the Right arrow, type „b‟.

See the results

Now get back to the “Expression” page and see how to change the appearance of the

<times/> element.
The next figures shows which item of menu controls the rendering option of the

<times/> element.

Mastering MathML Content Markup http://www.mmlsoft.com

 47

If we select another option (“⁢”) the appearance of the formula is not

changed, but the icon prompts to the need of refreshing the document through MathML (the
“Refresh All Through MathML” command from the “View” menu).

After refreshing the formula is rendered as if instead of the <times/> element is used the

presentation element <mo>&InvisibleTimes</mo>.

2. Example 4.4.3.4.2 from the W3C MathML Recommendation): Maximum and

minimum.

<apply>

 <max/>

 <ci> a </ci>

 <ci> b </ci>

</apply>

Mastering MathML Content Markup http://www.mmlsoft.com

 48

<apply>

 <min/>

 <bvar><ci>x</ci></bvar>

 <condition>

 <apply><notin/><ci> x </ci><ci type="set"> B </ci></apply>

 </condition>

 <apply>

 <power/>

 <ci> x </ci>

 <cn> 2 </cn>

 </apply>

</apply>

Mastering MathML Content Markup http://www.mmlsoft.com

 49

Here (1) is an expression to be minimized; (2) is an input slot for one bound variable (the
“bvar” element); (3) a condition element. There is also a button for many bounded variables

() that shows the following dialog:

This approach is common for all the cases when qualifier elements of the MathML
content markup are needed.

Please note that according to the W3C MathML Recommendation the “bvar” element
should not be rendered in such a content markup element, so we consider it as an invisible (see
the section “Basic Content Elements: invisible and transparent elements” for detailed
discussion). This means that the corresponding input slot is available only after insertion of the
“min” element, because currently rendering of invisible elements is turned off ().

Insert the “apply” element with the <power/> operation.

Type “x”, “2”.

Mastering MathML Content Markup http://www.mmlsoft.com

 50

Navigate to the “bar” input slot and type a name of the bounded variable (“x”).

Create an expression for the “condition” element.

Mastering MathML Content Markup http://www.mmlsoft.com

 51

Type “x” as a value of the first argument of the “apply” element in the condition; create

the “ci” element of the “set” type as the second argument of the “apply”.

See results on different pages of Formulator 3.7 MathML Weaver.

Mastering MathML Content Markup http://www.mmlsoft.com

 52

Now get back to the “Expression” page and refresh the document contents through

MathML.

Note that the bounded variable is hided according to the proper rendering of the “min”

element with condition qualifier. We can edit the bounded variable at any time if we turn on
rendering of invisible elements and refresh the document through MathML once more.

Mastering MathML Content Markup http://www.mmlsoft.com

 53

2. Example 4.4.3.17.2 from the W3C MathML Recommendation): universal quantifier

(forall):

<apply>

 <forall/>

 <bvar><ci> p </ci></bvar>

 <bvar><ci> q </ci></bvar>

 <condition>

 <apply><and/>

 <apply><in/><ci> p </ci><rationals/></apply>

 <apply><in/><ci> q </ci><rationals/></apply>

 <apply><lt/><ci> p </ci><ci> q </ci></apply>

 </apply>

 </condition>

 <apply><lt/>

 <ci> p </ci>

 <apply>

Mastering MathML Content Markup http://www.mmlsoft.com

 54

 <power/>

 <ci> q </ci>

 <cn> 2 </cn>

 </apply>

 </apply>

</apply>

The forall element is usually used in conjunction with one or more bound variables, an

optional condition element, and an assertion. There is lot of available combination of different
constructs of this element (this is true also for other similar statements, like the “exists” element,
sums and products, integrals and so on). So MathML Weaver propose several buttons on
mathematical toolbars, trying to make it faster creating common MathML trees.

In the case of our example there is the button for the “forall” element with several

bounded variables and a conditional element: .

Here (1) and (2) are input slots for two bounded variables; (3) is a condition element; (4)

is an assertion.

Mastering MathML Content Markup http://www.mmlsoft.com

 55

Now we should insert the “apply” element with the <and/> operation and three

arguments.

In order to insert the <rationals/> element use the button:

Mastering MathML Content Markup http://www.mmlsoft.com

 56

Mastering MathML Content Markup http://www.mmlsoft.com

 57

See results on different pages of MathML Weaver.

Mastering MathML Content Markup http://www.mmlsoft.com

 58

Sequences and Series

1. Example 4.4.7.1.2 from the W3C MathML Recommendation): the sum element:

<apply>

 <sum/>

 <domainofapplication>

 <ci type="set"> B </ci>

 </domainofapplication>

 <ci type="function"> f </ci>

</apply>

Now it is inserted a visual form for editing the “sum” element with the

“domainofapplication” qualifier.

Mastering MathML Content Markup http://www.mmlsoft.com

 59

Input slots below the sum sign are rendered as

in order to allow to a user editing both the bounded variable (the first input slot) and the

“domainofapplication” element. Leave the first input slot empty and create a “ci” element of
type “set” for the second input slot. Then create another “ci” element for the argument of the
“sum” element.

Switch to the “MathML Tree” page and delete the node for the bounded variable, since

the example don‟t need the “bvar” presence. In order to do this, select the “bvar” node and
press Delete.

Mastering MathML Content Markup http://www.mmlsoft.com

 60

Then get to the “Expression” and “MathML Text” pages to see results.

2. Examples 4.4.7.3.2 from the W3C MathML Recommendation): the limit element:

<apply>

 <limit/>

 <bvar><ci> x </ci></bvar>

 <lowlimit><cn> 0 </cn></lowlimit>

 <apply><sin/><ci> x </ci></apply>

</apply>

Mastering MathML Content Markup http://www.mmlsoft.com

 61

Mastering MathML Content Markup http://www.mmlsoft.com

 62

Constructor elements: theory of sets and linear algebra

1. The next example shows how to create elements of the theory of sets.

Mastering MathML Content Markup http://www.mmlsoft.com

 63

Now create a list using a bounded variable and a condition element (example 4.4.6.2.2

from the W3C MathML Recommendation):

<list order="numeric">

 <bvar><ci> x </ci></bvar>

 <condition>

 <apply><lt/>

 <ci> x </ci>

 <cn> 5 </cn>

 </apply>

 </condition>

 <ci> x </ci>

</list>

If we recall the case of the minimum operator from the “Arithmetic, Algebra, Logic and

Relations” section, it will be obvious that the structure of the just created “list” element is quite

Mastering MathML Content Markup http://www.mmlsoft.com

 64

similar to that case. Namely, the starting input slot is for a rule of constructing list‟s items; after
the vertical line there is a smaller input slot for a bounded variable; the last input slot is for a
condition.

In order to get proper rendering of the list we should turn off the invisible elements

rendering and refresh the document through MathML, as it is shown on the next figures.

Mastering MathML Content Markup http://www.mmlsoft.com

 65

Switch to the “MathML Tree” page to see results.

2. The next examples shows how to create elements of the linear algebra.

<vector>

 <cn> 1 </cn>

 <cn> 2 </cn>

 <cn> 3 </cn>

 <ci> x </ci>

</vector>

Mastering MathML Content Markup http://www.mmlsoft.com

 66

Press „1‟, the Down arrow, „2‟, the Down arrow, „3‟, the Down arrow, „x‟.

See results:

The next example show how to construct a matrix and use the “selector” element.

<apply>

 <selector/>

 <matrix>

 <matrixrow>

 <cn> 1 </cn> <cn> 2 </cn>

 </matrixrow>

 <matrixrow>

 <cn> 3 </cn> <cn> 4 </cn>

 </matrixrow>

 </matrix>

 <cn> 1 </cn>

Mastering MathML Content Markup http://www.mmlsoft.com

 67

</apply>

Press „1‟, the Right arrow, „2‟, the Right arrow, „3‟, the Right arrow, „4‟, the Right arrow.

Select the whole matrix.

Insert the “separator” element.

Mastering MathML Content Markup http://www.mmlsoft.com

 68

Press the Right arrow, „1‟.

See the resulting MathML tree:

Calculus and Vector Calculus: Integral and Differentiation

1. Example 4.4.5.1.2 from the W3C MathML Recommendation): the int element:

<apply>

 <int/>

 <bvar><ci> x </ci></bvar>

 <lowlimit><cn> 0 </cn></lowlimit>

 <uplimit><ci> a </ci></uplimit>

 <apply>

 <ci> f </ci>

Mastering MathML Content Markup http://www.mmlsoft.com

 69

 <ci> x </ci>

 </apply>

</apply>

Use the mathematical toolbar .

Press „0‟, the Up arrow, „a‟ (a low and upper limits of the integral).

Type „f‟, the Right arrow, „x‟.

Mastering MathML Content Markup http://www.mmlsoft.com

 70

Press the Right arrow two times, type „x‟ (a bounded variable).

See results:

2. Example 4.4.5.2.2 from the W3C MathML Recommendation): the diff element:

Mastering MathML Content Markup http://www.mmlsoft.com

 71

<apply>

 <diff/>

 <bvar><ci> x </ci></bvar>

 <apply><ci type="function"> f </ci>

 <ci> x </ci>

 </apply>

</apply>

Type „x‟ (a name of the bounded variable), press the Right arrow.

Mastering MathML Content Markup http://www.mmlsoft.com

 72

Insert the “ci” element of type “function”; name it “f”.

Type „f‟, press the Right arrow two times (the first in order to get out of the “ci” node, the

second to get to the second input slot of the “apply” element). Type „x‟.

See results:

Partial Differentiation

Mastering MathML Content Markup http://www.mmlsoft.com

 73

1. The “partialdiff” element can automatically calculate a total degree of differentiation
by use of child degree elements. The next example demonstrates this feature.

Input names of bounded variables and choose a numeric and symbolic values of their

degree.

Now a total degree of differentiation can be calculated if we refresh the text through

MathML.

Mastering MathML Content Markup http://www.mmlsoft.com

 74

See results:

Turn on the “Show Read-Only” option from the “View” menu to see which areas can‟t be

edited in the created formula. The next figure suggests that automatically detected total degree
of the “partialdiff” element can‟t be edited (dashed red line around elements).

See the same results on the “XHTML” page of MathML Weaver, using the „Zoom‟

feature from the context menu.

Mastering MathML Content Markup http://www.mmlsoft.com

 75

2. Example 4.4.5.3.2 from the W3C MathML Recommendation): the partialdiff element:

<apply><partialdiff/>

 <bvar><ci> x </ci><degree><ci> m </ci></degree></bvar>

 <bvar><ci> y </ci><degree><ci> n </ci></degree></bvar>

 <degree><ci> k </ci></degree>

 <apply><ci type="function"> f </ci>

 <ci> x </ci>

 <ci> y </ci>

 </apply>

</apply>

Mastering MathML Content Markup http://www.mmlsoft.com

 76

Input a total degree of differentiation by typing „k‟. Press the Right arrow to start

inputting bounded variables.

Press „x‟, the Right arrow, „m‟, the Right arrow, „y‟, the Right arrow, „n‟, the Right arrow.

Mastering MathML Content Markup http://www.mmlsoft.com

 77

Press „f‟, the Right arrow, „x‟, the Right arrow, „y‟.

Switch to the “MathML Tree” and add the “type” attribute to the function „f‟.

Mastering MathML Content Markup http://www.mmlsoft.com

 78

Statistics

Lets‟ consider an example 4.4.9.6.2 from the W3C MathML Recommendation): the

partialdiff element:

<apply>

 <moment/>

 <degree><cn> 3 </cn></degree>

 <momentabout>

 <ci> p </ci>

 </momentabout>

 <ci> X </ci>

</apply>

Mastering MathML Content Markup http://www.mmlsoft.com

 79

Get rid of the input slot for the “momentabout” element (that should not be finally

rendered).

Read-only elements

Create the “variance” element with 5 arguments and see which elements are read-only in

the visual editing form.

Turn on the “Show Read-Only” option from the “View” menu.

Mastering MathML Content Markup http://www.mmlsoft.com

 80

See how MathML Weaver make it easy to navigate through the formula by marking

some MathML nodes as read-only.

Red dashed line around an element means that this element can‟t be edited, because it is

an essential part of a visual editing form for some element of the content markup. When a user
presses navigation buttons (e.g., arrows), MathML Weaver omits visiting every element of the
form, but rather chooses only not read-only elements. Due to this smart behavior a user can
navigate through the MathML tree much faster, without positioning on every tree hierarchy
level and every existing node.

Finish editing the “variance” element and see results.

Mastering MathML Content Markup http://www.mmlsoft.com

 81

Combining Presentation and Content Markup

MathML Weaver is able to combine Presentation and Content Markup of MathML in

three ways:

1. Presentation elements can be inserted into the input slots of editing form of the content

markup. When the presence of such combining seems inappropriate by W3C Recommendation,
presentation elements are wrapped into the “csymbol” an element, because MathML Weaver
consider such cases as definition on-the-fly of an element in MathML whose semantics are
externally defined.

2. The simplest way how content markup can be contained in presentation markup is just

simultaneously using the Presentation and Content mathematical toolbars, thus embedding
content markup nodes into the existing presentation hierarchy of elements. Note that the
resulting expression should still have an unambiguous rendering.

An example from the 5.2.1 section of the W3C Recommendation.

<mrow>

 <apply>

 <power/>

 <ci>x</ci>

 <cn>2</cn>

 </apply>

 <mo>+</mo>

 <msup>

 <mi>v</mi>

 <mn>2</mn>

 </msup>

</mrow>

Switch to the Content MathML input mode.

Mastering MathML Content Markup http://www.mmlsoft.com

 82

Type „^‟ to insert the “apply” element with the <power/> operation.

Press „x‟, the Right arrow, „2‟.

Switch to the Presentation MathML input mode; type „+‟.

Press the Right arrow to get out of the “apply” element; using presentation toolbar insert

the superscript MathML node.

Mastering MathML Content Markup http://www.mmlsoft.com

 83

Press „v‟, the Right arrow, „2‟.

See the resulting MathML tree and text.

Mastering MathML Content Markup http://www.mmlsoft.com

 84

3. By using Semantic Mapping Elements from the toolbar content markup can be

contained in presentation markup as a Parallel Markup, thus making use of both presentation
and content information for the same element.

Insert the “semantics” element.

Its rendering can‟t be correct right away, since a user should input needed values of child

“annotation” elements.

Create “sin(x) + 5” expression using different markups.

Refresh appearance of the document.

Mastering MathML Content Markup http://www.mmlsoft.com

 85

See results on different pages of MathML Weaver.

	Mastering MathML Content Markup
	General Principles of Editing and Navigation
	Token Elements: externally defined symbol (csymbol)
	Token Elements: numbers (cn) and identifiers (ci)
	Basic Content Elements: apply
	Basic Content Elements: functions and operators
	Basic Content Elements: invisible and transparent elements
	Arithmetic, Algebra, Logic and Relations
	Sequences and Series
	Constructor elements: theory of sets and linear algebra
	Calculus and Vector Calculus: Integral and Differentiation
	Partial Differentiation
	Statistics
	Read-only elements
	Combining Presentation and Content Markup

